Lehrveranstaltung im Frühjahrssemester 2022
- Veranstaltungsnummer
- 22SQ07g
- Semester
- FrSe 2022
- Typ
- Vorlesung/Übung
- Max. Teilnehmeranzahl
- 25
Termine
Tag | Zeit | Rhythmus | Dauer | Raum |
---|---|---|---|---|
Mo. | 15:00 bis 17:00 | Einmalig | 29.08.2022 bis 29.08.2022 | Gebäude Madrid - MAD 099 |
Di. | 15:00 bis 17:00 | Einmalig | 28.06.2022 bis 28.06.2022 | Gebäude Oslo - OSL 044 |
Di. | 15:00 bis 17:00 | Einmalig | 05.07.2022 bis 05.07.2022 | Gebäude Madrid - MAD 130 |
Mi. | 12:00 bis 14:00 | Alle zwei Wochen | 23.03.2022 bis 22.06.2022 | Gebäude Madrid - MAD 130 |
Do. | 10:00 bis 12:00 | Wöchentlich | 17.03.2022 bis 23.06.2022 | Gebäude Madrid - MAD 130 |
Kursleitung
Prof. Dr.Claudius Gräbner-Radkowitsch
- Telefon
- +49 461 805 2512
-
claudius.graebner-radkowitsch-TextEinschliesslichBindestricheBitteEntfernen-
@uni-flensburg.de - Gebäude
- Gebäude Madrid
- Raum
- MAD 219
- Straße
- Munketoft 3b
- PLZ / Stadt
- 24937 Flensburg
Beschreibung
Learning goals:
You will be introduced to the statistical programming language R. At the end of the course you will be able to perform all essential steps of a quantitative data analysis in R yourself. This includes:
(i) data acquisition and preparation,
(ii) visualization of the data on a publication-ready level, and
(iii) analysis of the data using both traditional statistics and regression analysis, as well as modern tools from the field of machine learning.
You will learn how to write visually appealing and reproducible reports in R Markdown and use the version control system Git for (collaborative) code development.
Type of examination:
Your final grade is composed of:
- A mid term open book exam (50%)
- A final open book exam (50%)
Further information:
Students will need to bring their personal laptops to class; you will need to install R, R Studio, and Git on your Laptop. All software used during this course is free and open source. All educational ressources such as textbooks are also free and open source.
Veranstaltungsgliederung: https://www.uni-flensburg.de/fileadmin/content/abteilungen/plurale-oekonomik/dokumente/etc/outline-datasciencer-1-0.pdf
Literatur
Ismai, C. & Kim, A. (2021): Statistical Inference via Data Science. Online: moderndive.com/index.htmlWickham, H. & Grolemund, G. (2017): R for Data Science. Online: r4ds.had.co.nz/index.html
Hanck, C., Arnold, M., Gerber, A. & Schmelzer, M. (2021): Introduction to Econometrics with R. Online: www.econometrics-with-r.org
Wickham, H. (2019): Advanced R. Online: adv-r.hadley.nz
More literature will be provided through the course outline [see Link above]