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If the task is to conduct a regression analysis in order to examine the sta-
tistical associations between variables, many scientists think, of course, of OLS
first. And it makes perfect sense: it’s probably the first regression technique
you’ll encounter - it’s part of the basic repertoire of statistical analysis. Fur-
thermore, OLS results are very informative. However, OLS needs a bunch of
assumptions regarding the data at hand to be satisfied (Wooldridge 2010). If
these assumptions are not met, results from OLS can be unstable, biased, or
misleading. It is important to note that the assumptions of OLS are seldom fully
met. Hence, to get stable results, we must apply robust regression techniques -
that is, techniques which do not need some of the assumptions to be satisfied.

I will discuss two scenarios where alternative regression techniques provide
more robust results compared to OLS. Both are about handling certain char-
acteristics of the dependent variable. First, we consider a scenario where the
measurement level of the dependent variable is ordinal. In the second scenario,
the outcome is metric, but its distribution is strongly skewed. Finally, it is
outlined how robust inference statistics can be achieved for both scenarios.

The techniques discussed are not only relevant but particularly so in the
context of extended replications. Since replications aim to assess the stability
of results, the application of alternative techniques aids in identifying method-
ological artifacts.

Modeling an ordinal outcome

Starting with a scenario where the outcome variable is ordinal, it is evident
that OLS is unsuitable, as OLS requires the outcome variable to be at least
interval-scaled. To apply a robust regression technique here means, in a very
basic sense, just not to use OLS but an alternative.

As an ordinal variable, the values of the dependent variable represent ordered
categories. Only the order of the categories has any meaning, the distances
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between the values are meaningless. Suppose an ordinal dependent variable Y
with m categories. For each of the m categories we can assign a rank. Saying
that category 2 (Y3) is higher than category 1 (Y1), and lower than category 3
(Y3).

Yi<Yo<...<Yn

And that’s it. We cannot say how much more or less is a category than
another. But the OLS regression coefficient would try to tell us this: according
to the model, by how many units is Y predicted to be larger or smaller if an
independent variable X is one unit larger. By regression of an ordinal outcome,
instead of modeling Y on a continuous value range, the leap from one category
of Y to another is modeled. A positive or negative effect of X then means, that
the higher the value of X, the higher or lower the category of Y predicted by
the model respectively. In detail, ordinal regression models the probability of Y
takes the higher category across all adjacent categories. From k = 2 to k = m,
the probability

PY=k|X)=1-PY =k—-1]|X)
is determined by the model

P(Y =k|X)=g(r+BX)

where X is a vector of independent predictor variables and B the vector of the
respective regression coefficients (each variable in X is assigned a corresponding
coefficient in B). The model wasn’t a model unless it was able to predict the
specific category Y takes conditional on X. Therefore, the cut points —7; must
be estimated. The cut points could be read like how large the scalar BX must
be to predict Y is taking the categorical value k or a higher. The cut point of
the first category is defined as —m; = —oo. The scalar BX is always larger than
minus infinity in the same way that Y is taking the smallest value or a higher,
which is Y is taking a category at all. The link function is denoted by g(-).

As the modeling of Y is appropriate as an ordinal outcome, a model of
the cumulative probabilities is estimated. Specifically, if —7,_1 < —73 for all
categories, the model can also be formulated as follows:

PY zk|X)=g(m+ BX)

Example I: 1 have selected the PISA 2022 data provided by the OECD
(2022). Not the whole data from all participating countries is used but the
German subset only. As dependent ordinal variable I used the proficiency level
in the math domain (PLM). Six levels or categories of PLM were defined. For
the ease of demonstration just one independent variable is used, specifically the
interval scaled mathematics self-efficacy of the students (M ATHEFF).

By having a look on the distribution of the dependent variable PLM (fig-
ure 1), the probit link function seems appropriate to model PLM: ¢ (-) = ¢ (-).
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Figure 1: PLM distribution

Table 1: Ordinal regression estimates (PLM model)
Parameter Estimate
by 0,257
—Ta —0,743
—T3 —0,4379
—T4 -0,179
—T5 0, 226
—T6 0,512

So, the probability of PLM taking category k or a higher one, conditional on
the independent variable M ATHEF'F, is modeled.

P(PLM >k | MATHEFF) = ¢ (1, + b MATHEFF)

The estimates for the model are shown in table 1. At first, by, the regres-
sion coeflicient of MATHEFF shows a positive effect on PLM. The higher
the mathematics self-efficacy of the students, the higher their proficiency level
in the math domain. The first cut point (—71), of course by definition, is mi-
nus infinity, since the probability of PLM taking level 1 or higher must be
1, regardless of MATHEFF. The second cut point is an estimate and it is
—0,743. That is, to predict PLM taking category 2 or a higher, BX must
exceed —0,743. Because in this example there is only one independent variable
in the model, we can calculate the MATHFEFF score which equals this cut
point. We doing so by dividing the respective cut point by b;. For cut point m
this threshold is a MATHFEF'F score of —2,89. Each of the five estimated cut
points was translated from the probit to the M ATHFEFF scale the same way
(3) (figure 2).
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Figure 2: Plot PLM by MATHEFF and cut points
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Modeling a metric outcome

OLS assumptions also can be violated with a metric dependent variable, specif-
ically by a heavily skewed or in some way non-symmetric distribution of Y. In
such a case ordinal regression as just discussed is not an option, because the
values of Y do not represent categories and the range of possible values can be
very large, maybe infinite. But in an ordinal regression model cut points must
be estimated for each value of Y. Doing this for a metric outcome variable would
rise the number of parameters to be estimated and hence decreases the degrees
of freedom dramatically. Robustness must therefore be introduced in another
way, namely by transforming Y and by adjusting the regression technique.

First, consider the transformation of the dependent variable. In fact, Y is
no longer supposed to used as dependent variable, but instead its cumulative
density, represented by the mean relative ranks of the values of Y.

R (y;
g = (¥:)
n

R (y;) denotes the mean absolute rank of the value of the corresponding
variable (1 < R (y;) < n).

This transformation or alternative to the original dependent variable reduces
skewness by flattening out the distribution. Additionally, the distribution of Y*
has no outliers.

The model formulation is the conventional linear form: a constant value (bg),
a vector of independent variables (X'), and a vector of regression coefficients (B).

V* =by+ BX
As it is seen easily, this model is very parsimonious compared to an ordinal
regression model, because it may not require estimating many cut points.
Next, the limited range of values of the (transformed) dependent variable
(0 < yf < 1) is considered by correcting the residuals (e; = y — ¢;) while
estimating the parameters of the model iteratively.
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Figure 3: dh17 distribution
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Finally, to stabilize the estimation, the importance of outliers in terms of
residuals can be reduced. There are multiple methods to accomplish this.
Among other things, the construction of weights and median regression. Con-

cerning the application of weights, these can be derived from the corrected
residuals in order to perform a reweighted least squares (RLS) regression.

The weights (w;) directly counteract the leverage effect of the residuals.

Another way is to perform median regression, that is to calculate the resid-
uals relating to the conditional median (instead of residuals with respect to the
conditional arithmetic mean). This regression technique also increases robust-
ness, as the median is unreceptive to outliers.

Example II: To demonstrate this with an example, the ALLBUS 2023 data
(GESIS Leibniz-Institut fiir Sozialwissenschaften 2025) were used. Once again,
not the whole data set is used, but the subset of the eastern states of Germany.
The dependent variable Y is the age of the youngest member of the household,
dh17. As independent predictor variable X the age of the respondents is used.
The level of measurement for both variables, dh17 and age, is the ratio scale.

The distribution plot of the dependent variable dh17 (figure 3) shows that
it is strongly skewed. The first step was to transform dh17 into its mean ranks.
While the distribution of dh17* does not conform to a normal distribution, it
is less peculiar than before (figure 4). In a certain sense, the distribution of
dhl17* is symmetrical and no longer has any outliers. Figure 5 presents a direct
comparison of the densities of the variables dh17 and dh17*.

The model to be estimate is stated as follows:
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Figure 4: dh17-dh17* transformation plot and dh17* distribution

Figure 5: Density plots dh17 and dh17*

dTLT’?* = by + biage

The estimates according to RLS and median regression are shown in table 2.
The RLS estimate of the effect of age on dh17 is positive. The older the respon-
dent, the older the youngest member of the respective household. With respect
to the regression coefficient b1, the median regression comes to the same result.

Inferential robustness: bootstrapping confidence
intervals
Finally, regarding inferential statistics, bootstrapping the confidence intervals

(CI) is a method for achieving robustness that works for both ordinal regression
and cumulative density regression. To avoid making assumptions in terms of

Table 2: Cumulative density regression (dh17)

Parameter Estimate
RLS
bo —0.241
by 0,014
Median regression
bo —0,222
by 0,014
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Table 3: Estimate and bootstrapped quantiles (median, CI-quantiles)

Bootstrap quantiles

Parameter Estimate Median 95% CI
Example I (PISA)
b1 0,257 0,258 [0, 223;0, 282]

Ezxample IT (ALLBUS)
RLS
by 0,0138 0,0138 [0,0135; 0, 0139]

Median regression

by 0,014 0,014 [0,013;0,015]

distribution, I suggest the corrected percentile method (Efron 1981). According
to this, a 95% CI for a regression coefficient b can determined as per

CI = [C’/D\F_l (6(22—1,96)) , CDF " (6(22 + 1, 96))] .

where the correction term z = ¢! (P (IS < b)) The bootstrapped estimate

is denoted by l;, the estimate from the original sample is denoted by b. CDF !
is the quantile of the bootstrap distribution of the regression coefficient.

Examples I and II (continued): For each regression analysis, the ob-
tained confidence intervals (table 3) indicating statistically significant effects:
the proficiency level in the math domain is positively affected by the mathe-
matics self-efficacy (b; in example I), and the effect of the respondents age on
the age of the youngest member of the household (b; in example II) is also
positive.
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