ÜBUNG 3

Achtung: Am kommenden Montag wird die Vorlesung auch über WebEx Raum angeboten https://uni-flensburg.webex.com/meet/hinrich.lorenzen

AUFGABE 1

Lässt sich auf einer Menge M im Falle

a)
$$M := \{a, b, c\}$$

b)
$$M := \{a, b, c, d\}$$

eine Verknüpfung \circ mit $b \circ b = c$ und $c \circ a = b$ so definieren, dass (M, \circ) eine Gruppe ist?

AUFGABE 2

Es seien die beiden folgenden Verknüpfungstafeln auf der Menge $M := \{1, 2, 3, 4, 5\}$ gegeben:

0	1	2	3	4	5
1	1	2	3	4	5
2	2	1	4	5	3
3	3	4	5	2	1
4	4	5	1	3	2
5	5	3	2	1	4

*	1	2	3	4	5
1	4	3	1	5	2
2	3	5	2	1	4
3	1	2	3	4	5
4	5	1	4	2	3
5	2	4	5	3	1

Man beweise, dass genau eine der beiden Verknüpfungsstrukturen $(M, \circ), (M, *)$ eine Gruppe ist.

Aufgabe 3

Für alle $a, b \in \mathbb{Q}$ sei für eine Verknüpfung * auf \mathbb{Q} definiert:

$$a*b := \begin{cases} \frac{a \cdot b}{a+b} , & \text{für } a \neq 0, \ b \neq 0, \ a+b \neq 0 \\ \\ a+b , & \text{sonst} \end{cases}$$

- a) Man berechne $0*0, 1*(-1), 0*\frac{1}{2}, (-\frac{2}{3})*\frac{3}{4}$
- b) Man zeige: $\exists e \in \mathbb{Q} \ \forall q \in \mathbb{Q} : e * q = q * e = q$
- c) Man zeige: $\forall q \in \mathbb{Q} \ \exists q' \in \mathbb{Q} \ : \ q * q' = q' * q = e$
- d) Man zeige: $\forall p, q \in \mathbb{Q} : q * q' = q' * q$

Damit ist $(\mathbb{Q},*)$ schon fast eine kommutative Gruppe, den Nachweis der Assoziativität ersparen wir uns.

In Gruppen lassen sich zum Beispiel schöne Gleichungen lösen, hier gibt es eine:

e) Man bestimme die Lösungen der Gleichung $x*x*3=\frac{3}{4}$ in $(\mathbb{Q},*)$

AUFGABE 4

Sei \oplus die "übertragsfreie Addition im Zehnersystem" in \mathbb{N}_0 , d.h. bei der (schriftlichen) Addition zweier Ziffern wird lediglich die Einerziffer notiert. Folgendes Beispiel soll dies illustrieren:

	2	8	4	1	2
\oplus	3	6	7	9	7
=	5	4	1	0	9

- a) Man zeige: Die Verknüpfungsstruktur (\mathbb{N}_0, \oplus) ist eine kommutative Gruppe.
- b) Man zeige: Die ein- und zweistelligen Zahlen aus \mathbb{N}_0 bilden eine Untergruppe H von (\mathbb{N}_0, \oplus) , mit der Ordnung 100.
- c) Man gebe eine Untergruppe H_2 von H an mit $|H_2|=2$, also mit Ordnung 2.
- d) Gibt es entsprechende Untergruppen $H_4,\,H_5,\,H_{50}$ von H?