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Outcomes and Missing Data

Martin Spiess∗

SOEP, DIW Berlin and International Institute of Management,

University of Flensburg, Germany

Abstract

This article proposes an estimation approach for panel models with

mixed continuous and ordered categorical outcomes based on gen-

eralized estimating equations for the mean and pseudo-score equa-

tions for the covariance parameters. A numerical study suggests

that efficiency can be gained in the mean parameter estimators by

using individual covariance matrices in the estimating equations

for the mean parameters. The approach is applied to estimate

the returns to occupational qualification in terms of income and

perceived job security in a nine-year period based on the German

Socio-Economic Panel (SOEP). To compensate for missing data, a

combined multiple imputation/weighting approach is adopted.
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1 Introduction

This paper describes the estimation of a panel model with mixed continuous and

ordered categorical outcomes. The proposed estimation approach was designed to

achieve two ends: first to study the returns to occupational qualification (univer-

sity, apprenticeship, other completed training; reference category: none) in terms

of objective and subjective gratification variables, that is, in terms of the depen-

dent variables income (log of monthly gross real labor income) and perceived job

security (very concerned about job security, somewhat concerned, not concerned

at all). Second, it was designed to answer the question of whether both outcomes

depend on common unobserved individual and time-invariant variables, given the

covariates explicitly controlled for in the regression model.

A growing body of evidence in economics and related fields supports the view

that in addition to routinely used objective variables, such as income, subjec-

tive variables can be understood as gratification variables as well (e.g., Easterlin,

2002; Diener and Seligman, 2004). According to this view and following the

suggestion, e.g., of Zimmermann (1985) to consider subjective in addition to ob-

jective variables in research on status inconsistency, this paper understands both

gratification variables and occupational qualification as factors that define social

positions. This means, for example, that when occupational qualification shows

a declining effect on income over time, unusual combinations of income and oc-

cupational qualification become more likely to emerge. An increasing proportion
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of such status inconsistencies may help explain deviating behavior, voting deci-

sions and social change (e.g., Geschwender, 1967a, 1967b). Furthermore, given

the importance of subjective variables, represented in this paper by perceived

job security, it is even more important to examine their relation to established

objective gratification variables like income.

The analysis is based on data from the German Socio-Economic Panel (SOEP;

www.diw.de/soep). The SOEP is a longitudinal data set of individuals aged 16

and older living in private households in Germany and surveyed on a yearly basis

(SOEP Group, 2001). It consists of several subsamples, the first two of which

started in 1984. Information is collected about the household as a whole and

additionally about each household member. Topics covered by the SOEP include

occupation, employment, earnings, household composition and housing, socio-

demographic variables and health, as well as subjective variables such as worries

about certain aspects of life. Hence the SOEP is particularly suitable for studying

income dynamics, the dynamics of subjective gratification variables, as well as

their possible interrelations.

The estimation of models with both continuous and categorical, in most cases

binary, outcomes has in recent years attracted increasing interest in various areas

of research. Since the estimation of these models based on likelihood approaches

(e.g., Fitzmaurice and Laird, 1995; Regan and Catalano, 1999; Gueorguieva and

Agresti, 2001) and Bayesian approaches (e.g., Dunson, 2000) is rather cumber-

some due to excessive computational burdens (Sammel et al., 1997), alternative
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approaches have been proposed (e.g., Muthén, 1984; Faes et al., 2004).

If the parameters not only of the mean but also of the covariance structure

are of interest, then approaches are attractive that draw on the assumption of a

latent linear model where each observable outcome is related to a continuous la-

tent outcome. Each latent outcome is in turn a linear function of covariates and,

given the covariates, is generally assumed to be normally distributed. To estimate

the parameters in a model known as the LISCOMP (Linear Structural Equations

with a Comprehensive Measurement) model, authors including Muthén (1984),

Muthén and Satorra (1995) and Arminger and Küsters (1988), have proposed a

three-stage estimation approach. The first step estimates the parameters of the

mean structure and, if they are identifiable, variances under the independence

assumption. The second step estimates the correlations of the errors of the la-

tent model, based on estimators from the first step and under independence of

pairs of outcomes. The third step estimates the parameters of interest, that is,

functions of the parameters from the first two steps, based on a weighted least

squares approach. However, this approach turned out to perform poorly with

respect to bias, efficiency and convergence (Reboussin and Liang, 1998; Spiess

and Hamerle, 2000). Hence, Reboussin and Liang (1998) proposed that the la-

tent model parameters be estimated simultaneously using a quadratic estimating

equations approach based on the correct specification of the means of the out-

comes and the covariances of pairs of outcomes (cf. Zhao and Prentice, 1990).

In the LISCOMP model, the parameters of interest are usually functions of
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both the parameters of the mean and of the covariance structure. Hence, in

these models it makes sense to use all information available in the mean and

the covariance structure and explicitly consider all dependencies to estimate the

parameters of interest. The present paper focuses not on functions of both sets

of parameters but separately on mean and covariance structure parameters. This

leads to a more robust approach, by estimating both sets of parameters as if they

were orthogonal (Prentice, 1988; Prentice and Zhao, 1991). Thus at the price of

lower efficiency, the parameters of the mean can be estimated consistently even

if the covariance structure is misspecified, necessitating a correct specification of

the mean model only (cf. Zhao and Prentice, 1990).

Following Prentice (1988) and Zhao and Prentice (1990), Qu et al. (1992,

1994) adopted this approach to estimate probit models with correlated binary

outcomes based on two sets of generalized estimating equations. To avoid a

heavy computational burden, they adopt the identity matrix as a working corre-

lation matrix in the estimating equations for the covariance parameters. Spiess

(1998) and Spiess and Keller (1999) proposed a similar approach, where pseudo-

score equations based on pairs of outcomes replace the estimating equations for

the correlation structure parameters. In a simulation study, Spiess (1998) com-

pared this mixed approach with the one adopted by Qu et al. (1992, 1994). The

results suggest that the parameter estimators of the mean structure are equally

efficient, but the mixed approach leads to estimators of the correlation structure

which are substantially more efficient. Furthermore, in a simple model with an
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exchangeable correlation structure, the loss of efficiency relative to the marginal

maximum likelihood estimator was negligible. Hence, the present paper gener-

alizes this approach to estimate probit models with correlated continuous and

ordered categorical outcomes.

The paper is organized as follows. Section 2 describes the panel model with

mixed continuous and ordered categorical outcomes, and Section 3 outlines its

estimation. One version of estimating equations adopts a working correlation

matrix which is common to all units, whereas another version takes advantage of

individual covariance matrices that follow from the covariance structure model.

Section 4 presents the results of a numerical study comparing these two versions

of the estimator with respect to their efficiency. Section 5 describes the mixed

imputation/weighting strategy adopted to compensate for missing data and gives

the estimation results with respect to the returns to occupational qualification.

Section 6 concludes.

2 The Model

Consider measurements on a continuous outcome, yit1, and an ordered categor-

ical outcome, zit2, obtained on each of N units at each of T points in time

(i = 1, . . . , N ; t = 1, . . . , T ). In addition, there is a vector of fixed covariates xit1

thought to be related to yit1 and a vector of fixed covariates xit2 thought to be

related to zit2. In the model to be estimated, yit1 is log(income), where income
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is the monthly gross real labor income, deflated by the national consumer price

index (base year 1995), and zit2 is perceived job security (0: very concerned about

job security, 1: somewhat concerned and 2: not concerned at all). The covariates

assumed to have an effect on both outcomes are age, number of children under 17

living in the same household, marital status (married: yes, no), nationality (Ger-

man nationality: yes, no), industrial sector (chemicals industry, building trade,

commerce, metalworking industry; reference category: other), occupational qual-

ification (university, apprenticeship, other completed training; reference category:

none) and tenure (in years) as well as tenure squared.

The model assumes that each observable outcome is related to a continuous

latent variable. In particular, the observable continuous outcome is identical to

the latent outcome. The ordered categorical outcome, zit2 with K + 1 possible

values 0, . . . , K (in our application K = 2), is represented by a (K × 1) vector of

binary indicators, yit2 = (yit21, . . . , yit2K)T . The binary indicators relate to the

continuous latent variable, y∗it2, via the threshold relation

yit2k =


1 if κtk < y∗it2 ≤ κt(k+1)

0 else

for k = 1, . . . , K,

where κtk and κt(k+1) are unknown thresholds and κt(K+1) = ∞.

The latent model is

y∗itj = ηitj + εitj and ηitj = xT
itjβtj,

where j = 1 denotes the equation with the continuous outcome, j = 2 denotes
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the equation with the ordered categorical outcome, βtj is an unknown time and

equation-specific vector of parameters of the mean structure. The random error

εitj is independent of ηitj for all i, t, j.

Let εi be the (2T ×1) vector with elements εi11, . . . , εiT2. Since the estimation

approach discussed in the next section does not involve higher-order moments

specifications, only conditional first and second moments need to be correctly

specified. That is, the underlying assumptions are that all possible pairs of εit2’s

are bivariate normally distributed, each y∗it2 conditional on yi11, . . . , yiT1 is uni-

variate normally distributed and each εit2 depends on all εit1, t = 1, . . . , T , only

through a linear function. Note that for a valid inference with respect to the

parameters of the mean structure, only the assumption of univariate normality

of the εit2’s is necessary. The covariance matrix of εi will be denoted as Σ. The

units i are assumed to be independent throughout.

In the general model not all parameters are identifiable. Hence, the errors

in the regression equations with the observable continuous outcome, that is, in

the linear part of the model, are restricted to have mean zero. In the nonlinear

part, that is, in the regression equations corresponding to the ordered categorical

outcomes, constants and means are set equal to zero. Furthermore, we assume

unit variance of the errors in the simulation section and in the application sec-

tion, unit variance of a component of the errors in the equations with ordered

categorical variables.

Depending on the covariance structure, Σ is a function of at most 2T 2 para-
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meters. For example, since the population considered can — for fixed covariates

— be assumed to be rather stable with respect to income but not necessarily

with respect to perceived job security, the model estimated assumes unobserved

subject-specific time-invariant random variables with equation-specific effects and

a stationary AR(1) process over time in the equation with the ordered categorical

outcome. More general covariance structures were considered as well but were

not identified. Together with the assumption of constant variances over time, this

model of the covariance structure amounts to the estimation of four covariance

structure parameters. The corresponding model in the errors is

εnt1 = θ11πn + θ12wnt1,

εnt2 = θ21πn + νnt2, νnt2 = θ22νn(t−1)2 + wnt2,

πn ∼ N(0, 1), E(wnt1) = 0, var(wnt1) = 1, E(νnt2) = µν,2, var(νnt2) = σ2
ν,2,

cov(νnt2, νnt′2) = γt,t′ , |θ22| < 1, νn02 ∼ N(µν,2, σ
2
ν,2), wnt2 ∼ N(0, 1 − θ2

22) and

E(πnνn02) = E(πnwntj) = E(νn02wntj) = E(wntjwnt′j′) = 0 for all j, j′, t, t′. From

these assumptions, µν,2 = 0, σ2
ν,2 = 1 and cov(νnt2, νnt′2) = θ

|t−t′|
22 . The elements

of Σ are

var(εnt1) = θ2
11 + θ2

12, cov(εnt1εnt′1) = θ2
11 if t 6= t′,

cov(εnt2εnt′2) = θ2
21 + θ

|t−t′|
22 and cov(εnt1εnt′2) = θ11θ21.
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3 Estimation of the Model

3.1 Estimating Equations for the Mean Parameters

Collecting all parameters of the mean structure, βtj, and thresholds in β, this

parameter is estimated by solving the estimating equations

0 =
N∑

i=1

(∂ µi

∂ β

)T

Ω−1
i (yi − µi), (1)

(Liang and Zeger, 1986), where Ωi is a unit-specific covariance matrix, yi is the

vector of all continuous outcomes and binary indicators representing the ordered

categorical outcomes of unit i, and µi is the vector of theoretical first conditional

moments E(yitj|xitj). For continuous outcomes, E(yit1|xit1) is equal to ηit1. For

binary indicators, E(yit2k|xit2) = Φ(ηit2 − κtk) − Φ(ηit2 − κt(k+1)), where Φ(·) is

the cumulative standard normal distribution.

Usually Ωi is of the form Ωi = V
1/2
i R(α)V

1/2
i , where Vi is a block-diagonal

matrix with diagonal entries equal to var(yit1|xit1) and Cov(yit2|xit2), respectively,

and R(α) is a suitable ‘working’ correlation matrix common to all units. However,

here Ωi follows directly from the assumed latent covariance structure and is a

function of the covariance parameters.

3.2 Estimating Equations for the Covariance Parameters

The parameters of the covariance structure are functions of T variances and

T (T − 1)/2 covariances of the linear part of the model, collected in vector δ11,
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T 2 polyserial correlations between errors of the nonlinear and linear equations,

collected in δ12, and T (T − 1)/2 polychoric correlations corresponding to the

nonlinear part of the model, collected in δ22.

The ith individual contribution to the estimating equations for δ11 is

ui,11 =
(∂Σ11

∂δ11

)T

(Σ−1
11 ⊗Σ−1

11 ) vec(Si −Σ11), (2)

where Σ11 is the part of Σ corresponding to variances and covariances of the linear

part of the model, Si = (yi1−µi1)(yi1−µi1)
′, where yi1 and µi1 are the vector of

continuous responses and its theoretical conditional mean, respectively, ⊗ is the

Kronecker product and vec(·) is the vec operator. Note that if all outcomes were

continuous, then (2) would be equal to the individual score equations derived

from the log-likelihood under multivariate normality.

While the estimating equations (2) require no distributional assumption, this

is different for the estimation of polyserial and polychoric correlations. The ith

individual contribution to the estimating equations for the vector of correlations

of the errors of the linear part of the model with the error of the tth latent

equation corresponding to an ordered categorical outcome, δt,12, is

uit,12 =
(∂µit,b|c

∂δt,12

)T

W−1
it,12(yit2 − µit,b|c), (3)

where µit,b|c is the conditional mean of yit2 given yi1 for fixed xit2,xi11, . . . ,xiT1,

Wit,12 = (Diag(µit,b|c) − µit,b|cµ
T
it,b|c), and Diag(a) is a diagonal matrix with

diagonal elements equal to a. The estimating equations (3) are identical to the
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pseudo-score equations derived from the pseudo-log-likelihood function of δt,12.

Details are given in Appendix A.1.

The estimating equations (3) are generalizations of those given in Catalano

and Ryan (1992), who consider a model with mixed continuous and binary out-

comes and an exchangeable correlation matrix. In contrast to Catalano and Ryan

(1992), the above estimating equations are not solved to estimate both mean and

covariance structure parameters. Hence estimation of the mean structure para-

meters via (1) remains robust with respect to a misspecification of the covariance

structure.

The estimating equations for the polychoric correlations consider each possi-

ble pair of ordered categorical outcomes as one polytomous variable and equate

this variable with its theoretical conditional mean. Denote the vector-valued rep-

resentation of non-redundant values of these multicategorical variables as vitt′2.

Note that its theoretical conditional mean for fixed xit2 and xit′2, µitt′2, is easily

evaluated using the bivariate cumulative standard normal distribution function.

Then the individual contribution to the estimating equations for the tt′th element

(t = 2, . . . , T , t′ = 1, . . . , t) of δ22, δtt′,22, is

uitt′,22 =
(∂µitt′2

∂δtt′,22

)T

W−1
itt′,22(vitt′ − µitt′2). (4)

where Witt′,22 = (Diag(µitt′2)− µitt′2µ
T
itt′2). The above estimating equations are

equal to pseudo-score equations derived from the pseudo-log-likelihood for δtt′,22

under the assumption of bivariate normality of the errors (Appendix A.1).
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3.3 The Stacked Estimating Equations

To estimate the parameters of the mean and the covariance structure, all the

estimating equations are stacked and solved simultaneously. However, usually

one is not interested in all possible 2T 2 parameters of the covariance matrix,

collected in δ, but in a parameter of lower dimension, θ, such that δ = δ(θ) is

differentiable. Thus, the parameter of interest is ϑ = (βT ,θT )T .

Collecting the error vectors from (1), (2), (3) and (4) in ei, the weight ma-

trices Ωi (see Appendix A.2), Σ11 ⊗Σ11, Wit,12 (t = 1, . . . , T ) and Witt′,22 (t =

2, . . . , T , t′ = 1, . . . , t) in the block diagonal matrix Γi and ∂µi/∂β, ∂Σ11/∂δ11,

∂µit,b|c/∂δt,12 (t = 1, . . . , T ), ∂µitt′2/∂δ22,tt′ (t = 2, . . . , T , t′ = 1, . . . , t) and

∂µit,b|c/∂δ11 (t = 1, . . . , T ) in Bi, the estimating equations for ϑ are

0 =
N∑

i=1

BT
i Γ−1

i ei.

The vector of estimates, ϑ̂, is iteratively calculated with updated value in the

(q + 1)th iteration given by

ϑ̂q+1 = ϑ̂q +

(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1 N∑
i=1

B̂
T

i Γ̂
−1

i êi.

Adapting results given in Prentice and Zhao (1991),
√
N(ϑ̂ − ϑ0) is asymp-

totically normally distributed with mean zero and asymptotic covariance matrix,

Vϑ̂, consistently estimated by

V̂ϑ̂ =

(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1{ N∑
i=1

B̂
T

i Γ̂
−1

i êiê
T
i Γ̂

−1

i B̂i

}(
N∑

i=1

B̂
T

i Γ̂
−1

i B̂i

)−1

,
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where all unknowns are replaced by their sample counterparts and estimates,

respectively.

The following points should be noted. First, solving the estimating equations

requires evaluation of one- and two-dimensional integrals only. Second, the esti-

mate Ω̂i needed to calculate ϑ̂ and V̂ϑ̂ is not guaranteed to be positive definite in

general. Hence, one strategy is to consider the simple function Ω̄ = N−1
∑N

i=1 Ω̂i.

Let V̄ = Diag(Ω̄). Then a working correlation matrix is R̂ = V̄
−1/2

Ω̄V̄
−1/2

and

individual covariance matrices can be calculated by Ω̃i = V̂
1/2

i R̂V̂
1/2

i , where V̂i

is a diagonal matrix with diagonal elements equal to the estimated variances of

the corresponding outcomes. This closely resembles the strategy of Liang and

Zeger (1986), who adopt a working correlation matrix identical for all N . How-

ever, note that the consistent estimation of ϑ̂ and V̂ϑ̂ does not depend on the

correlation matrix implied by Ω̂i. A second strategy is to first try to invert Ω̂i

for each unit and replace this individual matrix by Ω̃i only if the former is not

positive definite.

4 A Numerical Study

This section compares the estimator based on a correlation matrix common to

all units, denoted as GEE∗ with the estimator based on covariance matrices not

depending on a common correlation matrix, denoted as GEE. The data sets

were simulated according to the model described in Section 2 with T = 5 with
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four covariates generated independently of each other. The covariates followed

a uniform, a standard normal, a Bernoulli, and a mixture of a gamma and a

uniform distribution. The former two were generated independently over time and

equations, the third was held fixed over equations, and the fourth was correlated

over time with a correlation of 0.5. The parameters weighting the covariates in

the linear equations were βc,1 = −1, βc,2 = 0.8, βc,3 = 0 and βc,4 = −0.1, those

weighting the covariates in the equations with ordered categorical outcomes were

βo,1 = −1, βo,2 = 0.8, βo,3 = −0.8 and βo,4 = 0. The constant in the linear

equations was −0.3 and the thresholds in the equations with ordered categorical

outcomes were set equal to κ1 = −0.4 and κ2 = 0.7, respectively.

The error term followed a multivariate normal distribution with unit variances

and Σ = (Qθ ⊗ 121
T
2 ) + (1 − θ1)I10, where Qθ is a symmetric Toeplitz matrix

with diagonal elements θ1 and off-diagonal elements θ2, . . . , θ5, arranged in such a

way that the correlations decrease with increasing distance in time. Two versions

of true correlation matrices were considered. For the high correlation condition,

Model I, θ1 = 0.8, θ2 = 0.68, θ3 = 0.584, θ4 = 0.507 and θ5 = 0.4468. For the low

correlation condition, Model II, θ1 = 0.4, θ2 = 0.25, θ3 = 0.175, θ4 = 0.138 and

θ5 = 0.119, respectively.

According to both models, data sets were generated with N = 200, N =

500 and N = 1000 units. Statistics calculated over 500 simulations under each

condition are the mean (m) and standard deviation (sd) of the estimates, the

square root of the mean of estimated variances of the estimators, denoted as
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estimated standard deviation (ŝd), and the portion of rejections of the hypothesis

H0 : ϑs = ϑs,0 for α = 0.05, where s denotes the sth element of ϑ.

The general pattern of results does not differ with increasing sample sizes,

the only obvious differences being decreasing standard deviations and decreasing

differences of means of estimates and true values. The portions of rejections of

the null are in an acceptable range of approximately 0.05± 0.02. Further, since

there are nearly no differences with respect to the estimators of the covariance

structure parameters under both types of covariance matrices, Table 1 gives the

results for N = 500 and the parameters βc,1, βc,4, βo,1 and βo,2 only.

Table 1: Mean (m), estimated standard deviation (ŝd) and standard deviation

(sd) over 500 simulations.

Model I Model II

GEE∗ GEE GEE∗ GEE GEE∗ GEE GEE∗ GEE

βc,1 = −1 βo,1 = −1 βc,1 = −1 βo,1 = −1

m −0.9997 −0.9997 −1.005 −1.005 −0.9979 −0.9981 −1.005 −1.005

ŝd 0.0289 0.0284 0.0541 0.0488 0.0412 0.0410 0.0597 0.0564

sd 0.0294 0.0286 0.0555 0.0491 0.0413 0.0408 0.0617 0.0574

βc,4 = −0.1 βo,2 = 0.8 βc,4 = −0.1 βo,2 = 0.8

m −0.0988 −0.0987 0.8037 0.8031 −0.0988 −0.0988 0.8083 0.8029

ŝd 0.0151 0.0141 0.0296 0.0266 0.0200 0.0196 0.0300 0.0278

sd 0.0154 0.0140 0.0293 0.0258 0.0206 0.0201 0.0312 0.0277

The results in Table 1 suggest that there is a gain in efficiency if individual

correlation matrices are used rather than a common correlation matrix. This

efficiency gain seems to be largest for the parameters in the equations with ordered
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categorical outcomes under the high correlation condition. They are negligible

for the mean structure parameters of the linear part under Model I and Model

II. In fact, the relative variances of the GEE and the GEE∗ estimator range

from approximately 0.98 for βc,1 under Model II to 0.78 for βo,1 and βo,2 under

Model I. Put differently, efficiency can be increased up to 22% by using the GEE

instead of the GEE∗ estimator, which is a substantial improvement given that

using individual correlation matrices does not necessitate additional assumptions.

Hence, the GEE approach is used to estimate the model described in Section 2.

5 Application

5.1 The Data

The analysis involves panel data on full-time employed males from nine panel

waves beginning in 1991 of the West German subsamples of the German Socio-

Economic Panel (SOEP). As is typical for survey data, the SOEP suffers from

missing information. Not all households sampled in 1984 were actually observed

in the first wave (62%) and not all individuals interviewed in 1984 were also

observed in 1991. That is, in 1984 the number of individuals aged 16 years and

older observed is 12,245 living in 5,921 households. The same subsamples cover

9,467 individuals living in 4,669 households in 1991, the eighth wave of SOEP.

Additionally, there is item nonresponse, up to approximately 20% (e.g., monthly

18



gross income 1985), varying depending on the question being asked.

5.2 Handling of Missing Data

To compensate for attrition from 1991 up to 1999 and for missing items, the ap-

plication draws on multiple imputations. Basically, multiple imputations should

be draws from the joint posterior (predictive) distribution of the variables whose

values are unobserved given the observed values of all other variables and should

reflect the entire uncertainty inherent in these predictions (Rubin, 1987, 1996).

However, a general problem with complicated patterns of missing values is that

it is hard to specify this joint predictive distribution. Therefore, simpler and less

formally rigorous methods that approximate draws from this distribution have

been proposed.

One such method is implemented in the program IVEware (Raghunathan et

al., 2001, 2002), where imputations are generated based on the repeated estima-

tion of regression models for the variables to be imputed conditional on all other

variables with observed or already imputed values, and assuming non-informative

prior distributions for the parameters of these models. For a continuous response

variable this amounts to estimating a simple linear regression model, for a binary

response variable a logit model, for polytomous response variables a multicate-

gorical logit regression model, and for count variables a Poisson loglinear model.

For a detailed description see Raghunathan et al. (2001, 2002). Based on this
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procedure, M = 10 completed data sets were created.

The imputations were generated based on males selected into the imputa-

tion data set if they were observed in 1991 and unless their year of death was

known to lie between 1991 and 1999 or if they were in the army or doing civil-

ian service. Finally, N = 4043 males entered the imputation data set. Among

the variables considered to be important with respect to the imputation models,

aside from those included in the final model of interest, are variables indicating a

separation from or the death of a partner within the last year, schooling, working

experience, size of the firm or institute, number of overtime hours worked in the

month before the interview, employment status and a dummy variable coding

whether the individual is employed in the public sector. Additionally, tenure

squared and experience squared but also the estimated probability of observing

the corresponding household in 1991 entered the imputation models.

The assumption underlying the generation of imputations was that the missing-

data mechanism is ignorable, which is largely equivalent to assuming that the

missing values are missing at random (MAR; Little and Rubin, 2002). Unfortu-

nately it is not possible to test the MAR assumption against the assumptions that

the missing data are not missing at random (NMAR; Little and Rubin, 2002).

Furthermore, with survey data and a complex missing pattern it is hard to justify

any hypothesis about the exact missing mechanism, which, if misspecified, would

usually lead to improper imputations. On the other hand, by including as many

variables as possible that are thought to be relevant, the MAR assumption be-
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comes more likely to hold (e.g., Rubin, 1996). Furthermore, if the missing values

are NMAR, then proper imputation methods based on the MAR assumption are

still preferable to procedures that rely on the missing data being missing com-

pletely at random, such as simply ignoring the missing data (Schafer, 1997, Little

and Rubin, 2002).

Although the validity of Rubin’s (1987) variance estimator based on multiple

imputations has been questioned in the context of frequentist inference if the

estimator is not fully efficient (e.g., Nielsen, 2003), simulation results in Paik

(1997), Xie and Paik (1997) and Spiess and Keller (1999) do not suggest invalid

variance estimation for GEE estimators. In contrast, the variance estimation

seems to be quite robust even with respect to moderate misspecifications of the

imputation model.

To compensate for first wave nonresponse and attrition up to 1991 in the

data analyzed, again under the MAR assumption, each individual contribution

to the estimating equations is divided by the estimated probability of observing

that unit in 1991 (e.g., Robins et al., 1995, or, Wooldridge, 2002). These weights

can be derived from information delivered with the SOEP. There is, however, no

information available that allows one to take into account the uncertainty in the

estimated probabilities, leading to conservative inferences (Robins et al., 1995).

To estimate the model, individuals were selected from the multiply imputed

data set into the final samples if they lived in former West Germany and were

employed full-time in the private sector in each year from 1991 to 1999. Obser-
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vations with high leverage were excluded from the analysis. Thus, only those

individuals with weights lower than or equal to the 99%-quantile were included

in the final analysis. Since selection is based on variables with missings replaced

by multiple imputations, the size of the ten final samples varies from N = 702

to N = 781. The weighted standard analysis was then carried out M = 10 times

and the estimation results were combined according to the rules given, e.g., in

Little and Rubin (2002).

5.3 Results

Table 2 displays the test statistic D̃ and the corresponding p-values to test the

hypothesis that the effects of the covariates are identical over time based on the

weighted analyses of the M = 10 imputed data sets (Little and Rubin, 2002, see

also Li et al., 1991). In the case of the variables economic sector and occupational

qualification, the corresponding test is a test that the differences of the effects of

the corresponding dummy variables over time are, separately for both variables,

simultaneously zero. The test for equal effects of tenure amounts to testing that

differences of linear and quadratic effects over time are simultaneously zero.

Obviously, the hypothesis of time-invariant effects cannot be rejected for the

covariates (α = 0.05). In particular, the results in Table 2 do not support the

hypothesis of a changing effect of the social investment variable occupational

qualification on the objective and subjective gratification variables income and
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Table 2: Test statistic (D̃) and p-values to test H0 : ‘Effects are identical over

time’.

Response: log(Income) Response: Perceived job security

Variable D̃5 p Variable D̃5 p

Threshold 1 0.70 0.69
Constant 1.17 0.31

Threshold 2 0.54 0.83

Age 0.70 0.69 Age 1.14 0.33

Children 0.31 0.96 Children 0.66 0.72

Married 0.37 0.94 Married 1.38 0.20

Nationality 0.16 0.99 Nationality 1.61 0.12

Econ. Sector 0.21 1.00 Econ. Sector 0.73 0.82

Occup. Qual. 0.56 0.92 Occup. Qual. 1.04 0.41

Tenure 0.54 0.93 Tenure 0.48 0.96

perceived job security. This is also supported if one considers the unrestricted

parameter estimates weighting the three dummies university, apprenticeship and

other graduation separately (not shown in form of a table): for all three dummies,

the estimates do not change in a systematic way over time.

Table 3 provides the estimation results with the parameters of the systematic

part of the model restricted to be equal over time.

According to the upper first part of Table 3, the hypothesis of no effect on gross

income can be rejected at the 0.05-level for the covariates age, children, university,

apprenticeship, tenure and tenure squared, the former covariates having a positive

effect, whereas tenure squared seems to have a negative effect.

With respect to perceived job security, the results in the upper part of Table

3 suggest that only the covariates university, tenure and tenure squared seem to
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Table 3: Estimates (θ̂), standard errors (ŝd) and p-values; mean structure

parameters and thresholds restricted to the same value over time.

Mean Structure

Perceived
log(Income)

job security

Variable θ̂ ŝd p θ̂ ŝd p

Constant 7.84 0.08 0.00

Threshold 1 −1.58 0.23 0.00

Threshold 2 −0.19 0.23 0.41

Agea 1.15 0.16 0.00 −0.58 0.47 0.21

Tenurea 0.64 0.30 0.03 −3.27 1.06 0.00

Tenure Squareda −0.02 0.01 0.03 0.08 0.03 0.01

Childrenb 0.23 0.11 0.04 −0.47 0.29 0.11

Marriedb −0.03 0.29 0.91 −0.14 0.77 0.85

Nationalityb 0.77 0.46 0.11 0.97 1.10 0.38

Building Tradeb −0.35 0.55 0.53 1.66 1.20 0.17

Chemicals Ind.b −0.30 0.46 0.51 −0.91 1.17 0.43

Commerceb −0.55 0.52 0.29 1.16 1.21 0.34

Metalworking Ind.b −0.41 0.46 0.38 −1.47 1.15 0.20

University 0.56 0.08 0.00 0.59 0.17 0.00

Apprenticeship 0.15 0.06 0.02 0.15 0.12 0.22

Other Graduation −0.00 0.08 0.96 0.19 0.13 0.15

Covariance Structure

θ11 0.24 0.005 0.00

θ2
12 0.03 0.004 0.00

θ21 0.10 0.017 0.18

θ22 0.72 0.013 0.00
a Estimate and standard deviation multiplied by 102,
b Estimate and standard deviation multiplied by 101.

have an effect at the 0.05 level. Interestingly, the nonlinear effect of job tenure

on perceived job security is contrary to its effect on log(income): the longer the
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employee belongs to a company, the higher the probability of reporting concerns

about job security, although with a diminishing effect over time. Not surprisingly,

having a university degree seems to have a positive effect on perceived job security.

Estimation results with respect to the covariance structure are presented in

the lower part of Table 3. In the light of the assumption of a possible dependence

of the responses given the covariates, a surprising result is that the estimated

correlation of the corresponding error terms is close to zero, that is, θ21 is not

significantly different from zero. This does not support the hypothesis of un-

observed individual effects that are important with respect to both outcomes

simultaneously. On the other hand, the estimates of the correlation structure

parameters θ11 and θ22 for each equation over time are significantly different from

zero. This implies that there is substantive dependence over time within this

nine-year interval.

6 Discussion

The results of the last section do not suggest noticeable changes in the returns to

social investments. As might be expected, holding a university degree or having

finished training seems to have a rather stable positive effect on income. Holding

a university degree also seems to have a positive effect on perceived job security.

Interestingly, the results also suggest that the effect of job tenure on log(income)

is contrary to its effect on perceived job security. In the former case, job tenure
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has a positive although decreasing effect, whereas its effect on perceived job se-

curity is, although diminishing, negative. However, given the covariates, there

seems to be no additional dependence between the objective and the subjective

gratification variable, suggesting that, given that the underlying model assump-

tions are correct, both gratification variables are not interchangeable and should

be treated as conditionally independent returns to the social investment variable

occupational qualification. This result reveals, ex post, that fitting two separate

regression models for the two outcomes would lead to the same results.

The general approach of estimating the covariance parameters in the above

model based on pseudo-score equations was justified with simulation results pre-

sented in Spiess (1998), which suggest that this approach leads to more efficient

covariance parameter estimators than estimators based on equating empirical and

theoretical centered second moments under a working independence assumption.

As suggested by the simulation results of the present paper, additional efficiency

can be gained for the estimators of mean parameters by using unit-specific co-

variance matrices that directly follow from the assumed covariance structure and

do not depend on a correlation matrix common to all units. Having the most

efficient estimators possible with a given set of assumptions is particularly impor-

tant if estimation is based on survey data with missing values. For example, if

the weights used to compensate for missing units are based on estimated response

probabilities, as delivered with some public-use data sets, then one usually has no

information available to properly account for the uncertainty in these estimates.
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As a consequence, the resulting inference tends to be conservative (Robins et al.,

1995). Similarly, mild misspecifications of models to generate imputations typi-

cally lead to an overestimation of standard errors and to conservative inferences

(e.g., Little and Rubin, 2002; Rubin, 2003).

It should be noted that although the estimation approach proposed in this

paper is applied to a model with one continuous and one ordered categorical

outcome, it can easily be generalized to models with more than two outcomes

and unequal numbers of possible values of ordered categorical outcomes. Further,

to avoid problems with estimating too many unrestricted mean parameters, the

estimation approach can easily be supplemented to estimate lower dimensional

functions of the mean parameters. However, it should also be noted that the

approach as proposed in this paper is appropriate only for a balanced panel

design.

A Appendix

A.1 Pseudo-log-likelihood functions for δt,12 and δtt′,22

To derive the estimating equations for δt,12 note that the pseudo-log-likelihood

of δt,12 can be written as

l∗(δt,12) = const +
N∑

i=1

{yT
it2 log µit,b|c + (1− 1T

Kyit2) log(1− 1T
Kµit,b|c)}
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where 1K is a (K×1) vector of ones, const is a term not involving δt,12 and µit,b|c

is the vector of conditional means E(yit2|yi1,xit2,xi11, . . . ,xiT1), with elements

Pr(yit2k = 1|yi1,xit2,xi11, . . . ,xiT1) = Φ(ψit2k)− Φ(ψit2(k+1)), k = 1, . . . , K, and

ψit2r = {ηit2 − κtr + δT
t,12R

−1
11 V

−1/2
11 (yi1 − µi1)}/(1− δT

t,12R
−1
11 δt,12)

1/2

if r ≤ K and ψit2r = −∞ if r = K + 1, where R11 and V11 are the parts of

R(α) and Vi, respectively, corresponding to the linear part of the model. The

derivative of l∗(δt,12) with respect to δt,12 leads to estimating equations (3).

To derive the estimating equations (4) note that each pair of binary indicator

vectors representing a pair of ordered categorical outcomes is represented by a

polytomous variable. Thus, let y+
it2 = (yit20,y

T
it2)

T , where yit20 = 1 − 1T
Kyit2, let

vitt′2 be a S = {(K+1)2−1}-dimensional column vector of elements vec(y+
it2y

+,T
it′2 ),

t 6= t′ but not including the element yit20yit′20, and µitt′2 = E(vitt′2|xit2,xit′2),

with elements Pr(yit2l = 1, yit′2l′ = 1|xit2,xit′2), l = 0, . . . , K, not including the

elements Pr(yit20 = 1, yit′20 = 1|xit2,xit′2). Then the derivative of the pseudo-log-

likelihood function

l∗(δtt′,22) =
N∑

i=1

{vT
itt′2 log µitt′2 + (1− 1T

Svitt′2) log(1− 1T
Sµitt′2)}.

with respect to δtt′,22 leads to estimating equations (4).

A.2 The Matrix Ωi

The assumed structure of Σ implies Ωi as follows. The partition of Ωi corre-

sponding to variances and covariances of the linear part of the model is identical
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to Σ11. Let ζ∗it2k = ηit2 − κtk and ζ∗it2(k+1) = ηit2 − κt(k+1), respectively. The

partition of Ωi corresponding to covariances of the linear and the non-linear part

of the model, Ω12, is a matrix made up of vectors

Cov(yi1, yit2k) = −V
1/2
11 δt,12{ϕ(ζ∗it2k)− ϕ(ζ∗it2(k+1))},

where ϕ(·) is the standard normal density function. The elements of the partition

of Ωi corresponding to the nonlinear part of the model represented by the binary

indicators are

Cov(yit2) = Diag(µit2)− µit2µ
T
it2 t = 1, . . . , T

on the diagonal, and, as off-diagonal elements,

Cov(yit2k, yit′2k′) = µitt′2,kk′ − µit2kµit′2k′ ,

where µitt′2,kk′ and µit2,k are the corresponding elements from µitt′2 and µit2,

respectively.
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