

S. Böttger^{a,b}, C. Pipke^b, D. Rosenberg^b, W. Jansen^b, U. E. A. Fittschen^{a,c}

^aChemistry Departement, Washington State University, Pullman, WA 99163 ^bDepartement of Chemistry and its teaching methods, Europa-Universität Flensburg, Flensburg, Germany, 24943 ^cTechnische Universität Clausthal, Institut für Anorganische und Analytische Chemie, Clausthal-Zellerfeld, Germany, 38678

Introduction

Mercury and arsenic compounds were often used to prevent damage to cultural heritage specimens, e.g. herbaria and paintings [1]. Over time, Hg⁰ air borne is formed. The pathway comprises bacterial activity and redox processes and is still subject of discussion.

Mercury has previously been determined by REXES directly on specimens [1]. Portable mercury vapor indicator (MVI) [3,4], SEM, XRD, XPS and ICP-MS [3], and a portable analyzer using AAS [6] have also been used on a variety of samples.

By using Total Reflection X-Ray Fluorescence (TXRF), workgroups have determined Hg in other samples like wastewater [6], seawater [7], and other liquid samples using Au-nanoparticles [8], and in seafood samples by using Agnanoparticles (AgNPs) [9]. To the best of our knowledge no data is published for the determination of gas phase Hg by using the AgNP-TXRF approach.

Objective and Experimental

The aim was to develop a reliable, precise, and accurate analysis of gas phase Hg by using TXRF.

- > Chemicals and instrumentation needed are generally already available in laboratories using TXRF for elemental analysis, and a special setup is therefore not necessary.
- Enrichment of the gas phase Hg on AgNPs was performed and Hg concentrations were determined using a S2 Picofox TXRF (Bruker, Germany).
- \succ A custom built micro-X-ray fluorescence spectrometer (μ -XRF) was used [10] for the optimization of sample preparation procedures, as well as provide reliable and accurate Hg determination.
- \triangleright AgNPs are produced using AgNO₃ and NaBH₄. Different procedures of preparation and determination were tested: rinsing of deposits after the drying

process; absolute determination; internal standards and external calibration curves.

Results from AgNP method optimization

Optimization of the Ag-NP preparation method

The AgNPs were dropped on a Quartzcarrier and placed in a Hg saturated atmosphere and allowed to equilibrate for 24 h (Fig. 1).

Efficiency and reproducibility of the Hgcapture of washed and non-washed AgNPspecimens were studied (Table 1). The average standard deviation of Ag was ca. 10 % within a batch. Washed carriers contained ~60% less Ag than non-washed carriers. In addition to lower Ag levels, method optimization also resulted in increased Hg capture on washed carriers.

μ-XRF evaluation of internal standards and conclusions about homogeneity

IS Kα	RGB image	Table 2: Results relating Ag to two internal standards, Cr & Mo, and the resulting deviation for different areas.						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 1.2		Ag/IS and amount of Ag [mg/L] Total deposit	Ag/IS and Ag [mg/L] Area A	Ag/IS and Ag [mg/L] Area B	Ag/IS and Ag [mg/L] Area C	Ag/IS and Ag [mg/L] Area D	Max. Deviati from total [9
4000 0 0.0 0 0.0 0 0.2 0.4 0.6 0.8 1.0 Mo Ka 2700 140	0.0 0.0 0.2 0.4 0.6 0.8 1.0 mm RB MoKa and AgL3 log-scale	Ag and Cr (not washed)	7.92; 113.7	12.2; 73.8	6.27; 143.6	7.88; 114.3	7.88; 114.2	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ag and Mo (not washed)	0.033; 962	0.033; 976	0.035; 924	0.035; 926	0.032; 987	4
900 400 600 200 300 0 0 200 400 600 800 1000 micromotor	400 200 0 200 400 600 800 1000 micrometer	Ag washed and Mo	0.041; 776	0.047; 683	0.03; 926	0.053; 607	0.035; 908	22
MoKa 2250 2000 1500	RB MoKa AgL3			:_				

not homogeneously Ine CI-ISIS distributed on the AgNPs and therefore gives highly variable results depending on the angle of irradiation (Table 2, Fig. 2, Fig. 3). The Mo-IS is more homogeneous and gives better results than the Cr-IS (Table 2, Fig. 3).

Table 1: Results relating absolute	Treatment	Ave. Absolute Ag [ng]	Ave. Absolute Hg [ng]	Ave. Hg/Ag
weights of Hg and Ag for washed and non-washed AgNPs.	Non-washed AgNPs	67	0.5354	0.00085
	Washed AgNPs	45	6.09396	0.01379

Figure 3: μ-XRF images of elemental distribution. Color intensity of RGB images is scaled between 5 and 80 % of the maximum number of counts. 1st row Ag and Cr (not washed), 2nd row Ag and Mo (not washed), 3rd row Ag washed and Mo.

Results from External Calibration

Neither IS gave completely satisfactory results. A five-point calibration curve was used for external calibration. Since AgNP weights on the carriers fell in the range of 100 - 200 ng, two calibration ranges were selected for Ag: 100 - 500 ng and 60 -250 ng.

- > A linear regression analysis was performed following the calculation of the residuum and elimination of outliers (Fig. 4).
- Higher Ag masses (> 300 ng) resulted in higher variability between replicates.

Fig. 4: External calibration of Ag.

- \blacktriangleright A five-point calibration range of 60 200 ng was used for Hg.
- > A linear regression analysis was performed following the calculation of the residuum and elimination of outliers (Fig. 5).
- \succ The results deviate from the absolute values measured by the program Spectra.
- > The maximal allowable work-place concentration for Hg is 0.020 mg/m³, which corresponds to ca. 850 pg absolute on the carrier. Since the actual concentrations in the museums

Fig. 5: External calibration of Hg.

Conclusions

- Lower limits of detection (LLD) for Ag and Hg were found to be 129 pg and 4 pg, respectively.
- > The calibration of Hg needs to be performed in a significantly lower concentration range. Since the maximum allowable work-place Hg concentration is 0.020 mg/m³, and concentrations found in the Flensburg museum, as well as other museums, a calibration range from 50 pg to 1 ng would be favorable. This would also significantly reduce matrix effects.

were found to be around 0.002 mg/m³ (ca. 100 pg on the carrier), a calibration curve range of 0.05 - 1 ng would be more suitable for quantification purposes. A lower calibration curve range is also expected to be less prone to errors due to absorption effects.

Acknowledgements: The authors would like to thank the Fittschen Group and Zentraler Ausschuss für Europa und Internationales der Europa-Universität *Flensburg* for a travel grant to do research at Washington State University, as well as the Ausschuss für Forschung und Entwicklung and the Abteilung Chemie und Ihre Didaktik der EUF.

Europa-Universität Flensburg Institute of Mathematical, Scientific and Technical Education Department of Chemistry and its teaching methods	Sebastian Böttger <u>Sebastian.boettger@uni-flensburg.de</u>	References: [1] SIROIS, Collection Forum, 16 (1-2) (2001), 65-75. [2] VAUPEL, Deutsches Museum Wiss. Jahrbuch (1989), 189-226. [3] FELLOWES et al., J. Haz. Mat., 189 (2011), 660-669. [4] BRIGGS et al., New Phytol., 94 (1983), 453-457. [5] OYARZUN et al., Science Tot. Environ., 387 (2007), 346-352.	[9] ROMERO et al., J. Anal. Spectrom., 29 (2014), 696-706. [10] FITTSCHEN et al. XRS (2017), sccepted manusscript.
TU Clausthal	Prof. Dr. Ursula Fittschen Ursula.fittschen@tu-clausthal.de	[6] Marguí et al., Talanta, 82 (2010), 821-827. [7] Koulouridakis et al., Instr. Science & Techn., 34:4 (2006), 425-433. [8] Bennun, Gomez, Spetrochimica Acta Part B, 52 (1997), 1195-1200.	