

Introduction

- > Mercury and arsenic compounds were often used to prevent damage of cultural heritage specimens, e.g. herbaria and paintings, [1] and over time, Hg⁰ is formed by bacterial activity and released into the air. Furthermore, mirrors made before the end of the 19th century are mostly made of mercury [2] and can release Hg⁰ as well (Fig. 1).
- > Mercury was determined by Radioisotope Excited X-ray Energy Spectrometry (REXES) in nine museums directly on the exhibits [1] (Fig. 2). Portable mercury vapor indicator (MVI) [4,5], SEM, XRD, XPS and ICP-MS [4] and a portable analyzer using AAS [6] have also been used on a variety of samples.
- By using Total reflection X-Ray Fluorescence (TXRF), workgroups have determined Hg in other samples like wastewater [7], seawater [8] other liquid samples using Au-nanoparticles [9] and seafood samples by using Ag-nanoparticles (AgNPs) [10].
- \succ There are no more references for the determination of airborne Hg by using TXRF.

Results: Optimization of the Ag-NP preparation method

> The Ag-NPs were dropped on a Quartz-carrier and left in a saturated atmosphere of mercury and left there for 24 h (Fig. 4).

Tab. 1: results relation of Hg and A

	Ave. Absolute Ag [ng]	Ave. Absolute Hg [ng]	Ave. Hg/Ag
Non- washed Ag-NPs	67	0.5354	0.00085
Washed Ag-NPs	45	6.09396	0.01379

Fig. 4: Quartz-carrier left for 24 h in sat. atmosphere

Efficiency and reproducibility of the Hg-capture of washed and nonwashed AgNP-specimens were studied. Per batch, the standard deviation of Ag in average was about 10 %. Washed carriers had about 60% less Ag than non-washed specimens. Interestingly, Hg capture of the washed carriers was significantly higher than of the ones that were just dried (Tab. 1).

Europa-Universität Flensburg Institut für mathematische, naturwissenschaftliche und technische Bildung Abteilung für Chemie und ihre Didaktik

Contact: Sebastian Böttger

Dr. Ursula Fittschen ursula.fittschen@wsu.edu

Determination of airborne mercury using Ag-nanoparticles assisted TXRF

S. Böttger^{a,b}, D. Rosenberg^b, M. Busker^b, W. Jansen^b, U. Fittschen^{a*}

Fig. 1: Mercury Mirror [3]

Fig. 2: Hg treated examples [2]

Objective and Experimental

- analytical tool.
- set-up is not necessary.

- standards i.e. Ga, Cr and Mo.

4	g	

Fig. 5: micro-XRF images of elemental distribution first column of the Ag L-line, second of the internal standard (scale is given in counts) and third the RGB image of both elemental lines (the color intensity scaled between 5- and 80 % of the max. counts). First row Ag and Cr (not washed), second row Ag and Mo (not washed, third row Ag washed and Mo.

Acknowledgements and References:

sebastian.boettger@uni-flensburg.de

The authors would like to thank the Fittschen Group and Zentraler Ausschuss für Europa und Internationales der Europa-Universität Flensburg for the possibillity researching at the Washington State University.

[1] SIROIS, Collection Forum, 16 (1-2) (2001), 65-75. [2] VAUPEL, Deutsches Museum Wiss. Jahrbuch (1989), 189-226.

^a Chemistry Departement, Washington State University, Pullman, WA 99163 ^b Departement of Chemistry and Chemistry Education, Europa-Universität Flensburg, Flensburg, Germany, 24943

> The aim is to develop a reliable, precise and accurate analysis of airborne Hg using TXRF, a small footprint and efficient micro-

 \succ Chemicals and instrumentation needed are in general already available in laboratories using TXRF for elemental analysis. A special

> Applied was a procedure to enrich the airborne mercury on AgNPs and determine its concentration by using TXRF.

> A S2 Picofox (Bruker, Germany) is used for TXRF. To optimize sample preparation procedures, as well as provide reliable and accurate determination, a custom built μ -XRF instrument was used [11].

 \succ AgNPs are produced using AgNO₃ and NaBH₄. Different procedures of preparation and determination were tested: rinsing of deposits after the drying process; absolute determination and internal

Specific aim 1: \succ reproducible production of AgNPs having good Hg capture efficiency.

Challenge: change of Ag surface due to PH change when Internal Standard (IS) is added (Fig. 3).

μ-XRF evaluation of internal standards & conclusions about homogeneity

	Ag/IS and amount of Ag [mg/L] total deposit	Ag/IS and Ag [mg/L] area A	Ag/IS and Ag [mg/L] area B	Ag/IS and Ag [mg/L] area C	Ag/IS and Ag [mg/L] area D	Max. Dev from tot
Ag and Cr not washed)	7.92; 113.7	12.2; 73.8	6.27; 143.6	7.88; 114.3	7.88; 114.2	35
Ag and Mo not washed)	0.033; 962	0.033; 976	0.035; 924	0.035; 926	0.032; 987	4
Ag washed and Mo	0.041; 776	0.047; 683	0.03; 926	0.053; 607	0.035; 908	22

Tab. 2: relation Ag with Cr and Mo as internal Standard and deviation of different areas

- > The Cr-STD is not homogeneous and gives different results, dependent which side is irradiated (Tab. 2, Fig. 5, Fig. 6).
- > The Mo-STD is more homogeneous and gives better results, than the Cr-STD (Tab. 2, Fig. 5).

The washed AgNP deposit with successive Mo-STD addition shows higher inhomogeneity.

B

Fig. 6: different angles for the X-ray beam

- [3] www.bungalowclub.org (07.03.17)
- [4] FELLOWES et al., Journal of Hazardous Materials, 189 (2011), 660-669

[7] MARGUÍ et al., Talanta, 82 (2010), 821-827.

[5] BRIGGS et al., New Phytol., 94 (1983), 453-457. [6] OYARZUN et al., Science of the Total Environment, 387 (2007), 346-352.

Specific aims and challenges

Specific aim 2:

 \succ accurate determination of active Ag and absorbed Hg.

Fig. 3: Ag-NPs under light-microscope (left: Ag-NPs normal (10 μL); right: Ag-NPs (9 μL) + HNO₃ 3% (1 μL)

Conclusion & Outlook

- viation tal [%]
- > As the washed deposit are very thin – using an external calibration curve (Ag) will be tested.
- \succ Next aim is to correlate Hg airborne concentration to Hg concentrations captured on the AgNPs in well-defined control environments.

 \succ After that, the next step is to test a Hg-contaminated room (e.g. in a museum) and Hgmirrors to determinate the Hg under field conditions.

[8] KOULOURIDAKIS et al., Instr. Science & Techn., 34:4 (2006), 425-433. [9] BENNUN, GOMEZ, Spetrochimica Acta Part B, 52 (1997), 1195-1200. [10] ROMERO et al., J. Anal. Spectrom., 29 (2014), 696-706. [11] FITTSCHEN et al. XRS (2016), submitted.